PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA19091: Mars Has Ways to Make Organics Hard to Find
 Target Name:  Mars
 Is a satellite of:  Sol (our sun)
 Mission:  Mars Science Laboratory (MSL)
 Spacecraft:  Curiosity
 Instrument:  SAM
 Product Size:  960 x 618 pixels (w x h)
 Produced By:  JPL
 Full-Res TIFF:  PIA19091.tif (1.781 MB)
 Full-Res JPEG:  PIA19091.jpg (72.92 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

This illustration portrays some of the reasons why finding organic chemicals on Mars is challenging. Whatever organic chemicals may be produced on Mars or delivered to Mars face several possible modes of being transformed or destroyed.

Organic chemicals are molecular building block of life, although they can be made without the presence of life. Whether or not organic chemicals are produced by processes on Mars, some are delivered to the planet aboard meteorites and dust from asteroids and comets.

Cosmic rays that can penetrate rock surfaces can trigger breakdown of organic compounds. So can oxidation reactions induced by ultraviolet light, such as a process called Fenton's reaction, which breaks down organic chemicals in the presence of iron minerals and peroxide. Fenton's reaction is sometimes used for environmental cleanup projects where organic-chemical pollutants are a concern on Earth. Perchlorates in Martian soil and rock may also oxidize organic chemicals, directly converting them to carbon dioxide.

Despite the possible pathways for breakdown of organic chemicals on Mars, NASA's Curiosity Mars rover has definitively detected Martian organics in powder the rover's drill collected from a mudstone target called "Cumberland." That target is close to an eroding scarp, where it had been covered by overlying layers of rock, reducing exposure to cosmic rays, for most of the approximately three billion years since the rock formed.

NASA's Mars Science Laboratory Project is using Curiosity to assess ancient habitable environments and major changes in Martian environmental conditions. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. NASA's Goddard Space Flight Center, Greenbelt, Maryland, built and operates SAM.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

Image Credit:
NASA/JPL-Caltech

Image Addition Date:
2014-12-16