PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA15673: Huge Troughs on Vesta
 Target Name:  Vesta
 Is a satellite of:  Sol (our sun)
 Mission:  Dawn
 Spacecraft:  Dawn
 Instrument:  Framing Camera
 Product Size:  3840 x 2160 pixels (w x h)
 Produced By:  JPL
 Full-Res TIFF:  PIA15673.tif (8.303 MB)
 Full-Res JPEG:  PIA15673.jpg (788.6 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

This image from NASA's Dawn mission shows huge grooves on the giant asteroid Vesta that were the result of mega impacts at the south pole. As Dawn sent the first close-up images of Vesta back to Earth in July 2011, scientists immediately noticed numerous grooves, as if created by a gigantic plow. This image shows two grooves in the Divalia Fossa system, running parallel to the lower edge of the image.

The majority of these grooves extend along the equator, but a second group -- inclined with respect to the equator -- have been identified in the northern hemisphere. These parallel trenches are usually several hundred miles (kilometers) long, up to 9 miles (15 kilometers) wide and more than a half mile (1 kilometer) deep. They are the result of two large asteroid impacts far in the southern hemisphere, demonstrating that impact events that occurred hundreds of miles (kilometers) apart caused shocks throughout Vesta and altered its surface.

The scene is an artificially generated oblique view of the grooves (or troughs) that run along Vesta's equator. The image was rendered from a global mosaic of Vesta processed from thousands of individual images obtained by the framing camera between January and April 2012. The altitude was approximately 130 miles (210 kilometers) above Vesta's surface. The image resolution is about 70 feet (20 meters) per pixel.

The Dawn mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate, Washington. UCLA is responsible for overall Dawn mission science. The Dawn framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, with significant contributions by DLR German Aerospace Center, Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The framing camera project is funded by the Max Planck Society, DLR and NASA/JPL.

More information about Dawn is online at http://www.nasa.gov/dawn and http://dawn.jpl.nasa.gov.

Image Credit:
NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Image Addition Date:
2012-05-10