PIA15005: Annual Variation in Global CO and O3
 Target Name:  Earth
 Is a satellite of:  Sol (our sun)
 Mission:  Aura
 Spacecraft:  Aura
 Instrument:  TES
 Product Size:  1115 x 560 pixels (w x h)
 Produced By:  JPL
 Full-Res TIFF:  PIA15005.tif (1.876 MB)
 Full-Res JPEG:  PIA15005.jpg (70.63 kB)

Click on image above for all movie download options

Original Caption Released with Image:

Click here for movie for PIA15005
Click on the image for the video

This time series, from one year of Tropospheric Emission Spectrometer (TES) measurements, shows how powerful the TES data are for understanding emissions, chemistry, and transport in the troposphere.In the Southern Hemisphere (SH), CO and O3 are highly correlated throughout the year. High values indicate active biomass burning, which reaches a maximum during SH spring (Sept., Oct., and Nov.).

In the Northern Hemisphere (NH), CO is produced primarily by fossil fuel consumption and thus its emissions reach a maximum during NH winter (Dec., Jan., Feb.). NH O3, in contrast, is at a minimum in winter, when weak sunlight limits photochemical production. The NH CO-O3 relationship is reversed during the summer, when CO sources are reduced and photochemistry is more active. The summer sunlight produces abundant hydrogen oxides (HOx), critical players in atmospheric chemistry, which act as a sink for CO but are a source of O3 in polluted regions where nitrogen oxides (NOx) are present. The stratosphere also contributes to the spring/summer buildup of O3 in the NH, with the stratosphere-to-troposphere flux of O3 reaching a maximum in NH mid-latitudes in late NH spring (March, Apr. May).

In the tropics, CO sources are small but O3 is produced along the Inter-Tropical Convergence Zone (ITCZ) as a result of NOx production by lightning. These regional differences in emissions and chemistry are clear, but so is the rapid communication between different regions through long-range transport. Since CO and O3 have relatively long lifetimes compared to the timescales for atmospheric mixing, they act as excellent tracers of atmospheric motion. Much of the rapid transport between regions takes place along the storm tracks in mid-latitudes.

For more information regarding this animation, please contact John Worden or Vincent Realmuto, Jet Propulsion Laboratory.

Image Credit:
NASA/JPL-Caltech

Image Addition Date:
2012-02-06