PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA14835: Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist's Concept
 Mission:  Mars Science Laboratory (MSL)
 Product Size:  2500 x 1406 pixels (w x h)
 Produced By:  JPL
 Full-Res TIFF:  PIA14835.tif (10.56 MB)
 Full-Res JPEG:  PIA14835.jpg (231 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

This artist's concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

The mission's entry, descent, and landing (EDL) phase begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars. During the approximately seven minutes of EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface.

Entry, descent, and landing for the Mars Science Laboratory mission will include a combination of technologies inherited from past NASA Mars missions, as well as exciting new technologies. Instead of the familiar airbag landing of the past Mars missions, Mars Science Laboratory will use a guided entry and a sky crane touchdown system to land the hyper-capable, massive rover.

In the depicted scene, the friction with the Martian atmosphere is slowing the spacecraft's descent and heating its heat shield. The rover (Curiosity) and descent stage of the spacecraft are inside the aeroshell consisting of the backshell and heat shield. This friction with the atmosphere before the opening of the spacecraft's parachute will accomplish more than nine-tenths of the deceleration of the entry, descent and landing phase.

The Mars Science Laboratory spacecraft is being prepared for launch during Nov. 25 to Dec. 18, 2011. Landing on Mars is in early August 2012. In a prime mission lasting one Martian year (nearly two Earth years) researchers will use the rover's tools to study whether the landing region has had environmental conditions favorable for supporting microbial life and for preserving clues about whether life existed.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, Calif., manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

More information about Curiosity is at http://mars.jpl.nasa.gov/msl/.

Image Credit:
NASA/JPL-Caltech

Image Addition Date:
2011-10-03