PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA14026: Small Crater in Oceanus Procellarum
 Target Name:  Moon
 Is a satellite of:  Earth
 Mission:  Lunar Reconnaissance Orbiter (LRO)
 Spacecraft:  Lunar Reconnaissance Orbiter (LRO)
 Instrument:  Lunar Reconnaissance Orbiter Camera (NAC)
 Product Size:  1200 x 1200 pixels (w x h)
 Produced By:  Arizona State University
 Other  
Information: 
More details and images at LROC
 Full-Res TIFF:  PIA14026.tif (1.442 MB)
 Full-Res JPEG:  PIA14026.jpg (360.5 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

This unnamed 740 meter diameter crater has bouldery walls and is morphologically similar to many <1 km diameter craters in the mare. Image width is 847 meters, LROC NAC M127328861L.

The LROC NAC has imaged thousands of blocky craters similar to this example found in Oceanus Procellarum. The numerous boulders may be fragments of bedrock, regolith breccias formed by the impact itself, or a combination of both. Since a crater depth of excavation is roughly one tenth its diameter, this small crater has probably distributed material from about 75 meters depth around its rim. Usually, ejecta material on the rim comes from the deepest part of the crater, and ejecta farther away from the crater comes from shallower depths. Thus astronauts can walk towards a crater rim, sampling material from greater depths as the rim is approached in a radial cross-section of the ejecta blanket. As you look at these boulders, you are witnessing a history of the emplacement of this mare. If we could just pick up samples and bring them back to Earth, we could figure out how much time elapsed between mare basalt flows in this area and how much the composition changed with time.

Click here for larger image of PIA14026
Click on image for larger version
The vast Oceanus Procellarum mare basalts are observed in this portion of LROC Wide Angle Camera monochrome M117895651M. Prominent across the scene are wrinkle ridges and secondary crater clusters. The arrow points to the blocky crater in the opening image

NASA's Goddard Space Flight Center built and manages the mission for the Exploration Systems Mission Directorate at NASA Headquarters in Washington. The Lunar Reconnaissance Orbiter Camera was designed to acquire data for landing site certification and to conduct polar illumination studies and global mapping. Operated by Arizona State University, LROC consists of a pair of narrow-angle cameras (NAC) and a single wide-angle camera (WAC). The mission is expected to return over 70 terabytes of image data.

Image Credit:
NASA/GSFC/Arizona State University

Image Addition Date:
2011-03-22