PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA10086: Cosmic Caper Unfolds in Infrared
 Mission:  Spitzer Space Telescope
 Instrument:  Infrared Spectrometer (IRS) 
 Product Size:  2997 x 1689 pixels (w x h)
 Produced By:  California Institute of Technology 
 Full-Res TIFF:  PIA10086.tif (15.19 MB)
 Full-Res JPEG:  PIA10086.jpg (269.1 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

Click here for poster version of PIA10086 Cosmic Caper Unfolds in Infrared
Poster Version

This plot of data from NASA's Spitzer Space Telescope reveals vast reservoirs of hot gas in a galaxy about a billion light-years away called 3C 326 North. The gas is hot both figuratively and literally: it was stolen from another galaxy, and, during its transfer from one galaxy to another, it was heated up to hot-lava temperatures as high as 730 degrees Celsius (1,340 degrees Fahrenheit).

The data were taken by Spitzer's infrared spectrometer, which splits light apart into its constituent wavelengths much like a prism turns sunlight into a rainbow. The resulting bumps and wiggles shown here, called a spectrum, reveal the signature, or "fingerprint," of a hot, molecular hydrogen gas. In space, molecular hydrogen gas is a precious commodity: it is a necessary ingredient to make stars and planets. On Earth, this same gas is considered as a possible alternative fuel for cars.

The strength of the hydrogen fingerprint also tells astronomers that a lot is present in the galaxy - the equivalent of one billion suns!

Astronomers were initially surprised to see so much gas because the galaxy is not busy making stars, as indicated by the weak signature in this spectrum of a star-forming molecule called polycyclic aromatic hydrocarbons. Further investigations revealed that the gas is being ripped off from a smaller, companion galaxy.

The weak signatures for neon, oxygen and iron in the spectrum indicate that the supermassive black hole at the center of this galaxy is relatively inactive, or sleepy.

Image Credit:
NASA/JPL-Caltech

Image Addition Date:
2007-10-22