PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA08516: Dusty Death of a Massive Star
 Mission:  Hubble Space Telescope
Spitzer Space Telescope
 Instrument:  IRAC
Multiband Imaging Photometer (MIPS) 
 Product Size:  1778 x 1778 pixels (w x h)
 Produced By:  California Institute of Technology 
 Full-Res TIFF:  PIA08516.tif (9.498 MB)
 Full-Res JPEG:  PIA08516.jpg (553.1 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

Click here for poster version of PIA08516Click here for Visible-Light Image
Dusty Supernova Remnant Poster
Figure 1
X-ray, Visible, Infrared
Figure 2

The supernova remnant1E0102.2-7219 (see inset in figure 1) sits next to the nebula N76 in a bright, star-forming region of the Small Magellanic Cloud, a satellite galaxy to our Milky Way galaxy located about 200,000 light-years from Earth. A supernova remnant is made up of the messy bits and pieces of a massive star that exploded, or went supernova. The image on the right shows glowing dust grains in three wavelengths of infrared radiation: 24 microns (red) measured by the multiband imaging photometer aboard NASA's Spitzer Space Telescope; and 8.0 microns (green) and 3.6 microns (blue) measured by Spitzer's infrared array camera. The red bubble is a dust envelope around the supernova remnant E0102, which is being heated by the shock wave created in the explosion of the remnant's massive progenitor star some 1,000 years ago. Most of the blue stars are in the Small Magellanic Cloud, though some are in our own galaxy.

The close-up of E0102 (figure 2) is a composite of the infrared observations by Spitzer (red), an optical image (0.5 microns) captured by NASA's Hubble Space Telescope (green), and X-ray measurements by NASA's Chandra X-ray Observatory (blue). The X-ray ring is generated when the reverse shock slams into stellar material that was expelled during the explosion.

Image Credit:
NASA/JPL-Caltech/ UC Berkeley

Image Addition Date:
2006-06-06