PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA03911: Enigmatic Terrain of Elysium Planitia
 Target Name:  Mars
 Is a satellite of:  Sol (our sun)
 Mission:  2001 Mars Odyssey
 Spacecraft:  2001 Mars Odyssey
 Instrument:  THEMIS
 Product Size:  1239 x 3043 pixels (w x h)
 Produced By:  Arizona State University
 Producer ID:  20020801A
 Full-Res TIFF:  PIA03911.tif (1.65 MB)
 Full-Res JPEG:  PIA03911.jpg (515.4 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:


(Released 1 August 2002)
The lowland plains of Elysium Planitia contains a terrain that puzzles Mars scientists. The most intriguing and debatable landforms in the region are the plates and ridges seen through out most of this image. The plates can be up to 7 km diameter and appear to have been rafted apart. The plates can be "jigsaw fitted" back in place. Various investigators have attributed the morphology of the plains material located on the floor of the Elysium basin to a wide range of geologic processes/landforms. Some researchers think that the plains are composed of low-viscosity flood lavas, while others argue for a fluvial origin (dried remnants of hyperconcentrated floods or mudflows). The plains surface exhibits a "crusty" appearance that some researchers have attributed to crusted over flood lavas and pressure ridges. However, dried mudflows can exhibit the same type of texture. The debate continues. Numerous small dark haloed craters and a buried 1 km diameter crater can also be seen in the upper third of the image. Near the bottom of the image older cratered highlands and plains are visible as are the margins of the younger platy material.
Image Credit:
NASA/JPL/Arizona State University

Image Addition Date:
2002-08-05