PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA03910: Medusae Fossae
 Target Name:  Mars
 Is a satellite of:  Sol (our sun)
 Mission:  2001 Mars Odyssey
 Spacecraft:  2001 Mars Odyssey
 Instrument:  THEMIS
 Product Size:  1240 x 3043 pixels (w x h)
 Produced By:  Arizona State University
 Producer ID:  20020731A
 Full-Res TIFF:  PIA03910.tif (1.767 MB)
 Full-Res JPEG:  PIA03910.jpg (449.7 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:


(Released 31 July 2002)
This image crosses the equator at about 155 W longitude and shows a sample of the middle member of the Medusae Fossae formation. The layers exposed in the southeast-facing scarp suggest that there is a fairly competent unit underlying the mesa in the center of the image. Dust-avalanches are apparent in the crater depression near the middle of the image. The mesa of Medusae Fossae material has the geomorphic signatures that are typical of the formation elsewhere on Mars, but the surface is probably heavily mantled with fine dust, masking the small-scale character of the unit. The close proximity of the Medusae Fossae unit to the Tharsis region may suggest that it is an ignimbrite or volcanic airfall deposit, but it's eroded character hasn't preserved the primary depositional features that would give away the secrets of formation. One of the most interesting feature in the image is the high-standing knob at the base of the scarp in the lower portion of the image. This knob or butte is high standing because it is composed of material that is not as easily eroded as the rest of the unit. There are a number of possible explanations for this feature, including volcano, inverted crater, or some localized process that caused once friable material to become cemented. Another interesting set of features are the long troughs on the slope in the lower portion of the image. The fact that the features keep the same width for the entire length suggests that these are not simple landslides.
Image Credit:
NASA/JPL/Arizona State University

Image Addition Date:
2002-08-05