PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA03763: Olympus Mons Lava Flows
 Target Name:  Mars
 Is a satellite of:  Sol (our sun)
 Mission:  2001 Mars Odyssey
 Spacecraft:  2001 Mars Odyssey
 Instrument:  THEMIS
 Product Size:  1228 x 3025 pixels (w x h)
 Produced By:  Arizona State University
 Producer ID:  20020405A
 Full-Res TIFF:  PIA03763.tif (1.84 MB)
 Full-Res JPEG:  PIA03763.jpg (623.5 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:


(Released 05 April 2002)
Olympus Mons stands 26 km above the surrounding plains, which is three times taller than Mt. Everest, and is the tallest volcano in the solar system. Olympus Mons is also wider (585 km) than the state of Arizona. Although these are impressive dimensions an astronaut would find walking these slopes easy, as they are typically only 2 to 5 degrees. This image contains numerous lava flows, leveed lava channels, a discontinuous sinuous rille (thought to be a collapsed lava tube) and lava plains. Close examination of the sinuous rille reveals that portions of the roof of the lava tube have not completely collapsed. All of these features can be seen in basaltic (iron and magnesium rich black rock) volcanic regions on Earth like Hawaii and Iceland. Impact craters are scarce, indicating a relatively young age (several hundred million years old) for these surfaces.
Image Credit:
NASA/JPL/Arizona State University

Image Addition Date:
2002-05-21