PIA18181: It's Craters All the Way Down
 Target Name:  Mercury
 Is a satellite of:  Sol (our sun)
 Mission:  MESSENGER
 Spacecraft:  MESSENGER
 Instrument:  MDIS - Narrow Angle
 Product Size:  1016 x 1016 pixels (w x h)
 Produced By:  Johns Hopkins University/APL
 Full-Res TIFF:  PIA18181.tif (1.033 MB)
 Full-Res JPEG:  PIA18181.jpg (140.1 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

Like Friday's image, today we see Mercury's surface at an image resolution we have rarely come close to before. In this scene, a portion of the rim of an unnamed crater 17 km (11 mi.) in diameter is visible, atop which sits a smaller, later crater (lower center). The prolonged record of impact cratering on Mercury is one of the planet's most visible traits, yet we continue to see the results of that process with ever higher-resolution images. And so, even at resolutions of 9 meters (~30 feet) per pixel, we observe small primary and secondary craters peppering the surface of the innermost planet.

This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week.

Date acquired: March 1, 2014
Image Mission Elapsed Time (MET): 35963392
Image ID: 5850686
Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS)
Center Latitude: 55.89°
Center Longitude: 303.66° E
Resolution: 9 meters/pixel
Scale: The crater in the lower center of the image is approximately 1.8 km (1.1 mi.) across
Incidence Angle: 59.9°
Emission Angle: 27.4°
Phase Angle: 32.5°
North is to the right in this scene.

The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015.

For information regarding the use of images, see the MESSENGER image use policy.

Image Credit:
NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Image Addition Date:
2014-03-31