PIA18057: NASA Soil Moisture Mission Produces First Global Radiometer Map
 Target Name:  Earth
 Is a satellite of:  Sol (our sun)
 Mission:  SMAP
 Product Size:  1669 x 1080 pixels (w x h)
 Produced By:  Goddard Space Flight Center
 Full-Res TIFF:  PIA18057.tif (5.41 MB)
 Full-Res JPEG:  PIA18057.jpg (226.5 kB)

Click on the image above to download a moderately sized image in JPEG format (possibly reduced in size from original)

Original Caption Released with Image:

With its antenna now spinning at full speed, NASA's new Soil Moisture Active Passive (SMAP) observatory has successfully re-tested its science instruments and generated its first global maps, a key step to beginning routine science operations next month.

SMAP launched Jan. 31 on a minimum three-year mission to map global soil moisture and detect whether soils are frozen or thawed. The mission will help scientists understand the links in Earth's water, energy and carbon cycles; help reduce uncertainties in predicting weather and climate; and enhance our ability to monitor and predict natural hazards such as floods and droughts.

In late March, mission controllers at NASA's Jet Propulsion Laboratory in Pasadena, California, successfully spun SMAP's 20-foot-wide (6-meter) antenna up to its full speed of 14.6 revolutions per minute in a two-step process. SMAP's spinning antenna makes cone-shaped scans across Earth's surface, measuring a 620-mile-wide (1,000-kilometer) swath of the ground as it flies above Earth from pole to pole at an altitude of 426 miles (685 kilometers). The wide swath width and polar orbit allow SMAP to map the entire globe with high-resolution radar data every two to three days.

With its spin-up activities complete, the observatory's radar and radiometer instruments were powered on from March 31 to April 3 in a test designed to verify the pointing accuracy of the antenna and the overall performance of the radar and radiometer instruments. The radar data acquired from the test have been processed to generate instrument data products with a spatial resolution of about 19 miles (30 kilometers).

SMAP's radiometer detects differences in microwave pulses transmitted to the ground by the instrument that are caused by water in soil. It measures Earth's natural microwave emissions at the frequency of 1.4 gigahertz. Around the globe, the most striking difference in these natural emissions is between water and land surfaces. A desert emits microwaves at about three times the rate a lake does. Because the difference is so large, even a small amount of moisture in soil causes a change that a radiometer can measure accurately.

The radiometer data from the instrument test have been processed to map microwave emissions from Earth's surface, expressed as brightness temperatures in Kelvin and at a horizontal spatial resolution of about 25 miles (40 kilometers). The Amazon and Congo rainforests produced strong emissions, depicted in red shades, due to their large volumes of biomass. Brightness temperatures in the Sahara Desert reach about 300 Kelvin due to its low moisture content. The impact of soil moisture is evident over a large region south of the Great Lakes, where an increase in soil moisture due to precipitation in March resulted in relatively cool brightness temperatures of about 200 Kelvin. Similar impacts of rain on soil moistures and brightness temperatures are seen in Namibia and Botswana, Africa, where there was significant rainfall in late March.

The radiometer brightness temperatures of Earth's ocean are mostly below 160 Kelvin, reflected by its blue shades. However, with the application of a different color scale to highlight the subtle variations over the ocean, the effects of winds on the ocean are also apparent. The brightness temperatures of Greenland and Antarctica are low (approximately 200 Kelvin) due to their low physical temperatures and high emissivity (the efficiency of these polar regions at emitting thermal energy). The brightness temperatures of sea ice fall in the middle range because its salt content is less than the salty water in the ocean, but high enough to distinguish it from land surfaces.

The SMAP mission is required to produce high-resolution maps of global soil moisture and detect whether soils are frozen or thawed. SMAP's radar has two data acquisition functions: one for synthetic aperture radar (SAR) processing to produce radar measurements at a spatial resolution of 0.6 to 1.9 miles (1 to 3 kilometers), and another for low-resolution processing to produce radar measurements at a spatial resolution of 19 miles (30 kilometers). The SAR function will be used over land surfaces and coastal oceans during routine science operations, while low-resolution processing will be exercised over land as well as over global ocean areas. Since the SAR function was only turned on for limited durations during the March 31 - April 3 test, mission scientists did not obtain enough SAR data to produce global high-resolution maps. Beginning April 13, SMAP will start conducting regular SAR observations that will enable high-resolution global mapping of land surfaces about every two to three days.

Scientists will combine measurements from SMAP's radar and radiometer sensors to capitalize on the strengths of each and work around their weaknesses. The radar alone can produce a soil moisture measurement with a spatial resolution of about 1.9 miles (3 kilometers), but the measurement itself is less accurate than the one made by the radiometer. The radiometer alone achieves a highly accurate observation of soil moisture but with a much poorer spatial resolution of about 25 miles (40 kilometers). By combining these separate measurements through advanced data processing, SMAP will provide the user community with a combined soil moisture measurement that has high accuracy and a resolution of 5.6 miles (9 kilometers). The advanced processing required to combine these active and passive measurements is now being functionally checked out, and is the last step in SMAP's postlaunch checkout process. SMAP will offer the individual radar and radiometer data, among other data products.

SMAP is managed for NASA's Science Mission Directorate in Washington by JPL with participation by NASA's Goddard Space Flight Center, Greenbelt, Maryland. JPL is responsible for project management, system engineering, instrument management, the radar instrument, mission operations and the ground data system. Goddard is responsible for the radiometer instrument. Both centers collaborate on the science data processing and delivery of science data products to the Alaska Satellite Facility and the National Snow and Ice Data Center for public distribution and archiving. NASA's Launch Services Program at NASA's Kennedy Space Center in Florida is responsible for launch management. JPL is managed for NASA by the California Institute of Technology in Pasadena.

For more information about SMAP, visit http://smap.jpl.nasa.gov.

Image Credit:

Image Addition Date: