PDS logoPlanetary Data System
PDS Information
Find a Node - Use these links to navigate to any of the 8 publicly accessible PDS Nodes.

This bar indicates that you are within the PDS enterprise which includes 6 science discipline nodes and 2 support nodes which are overseen by the Project Management Office at NASA's Goddard Space Flight Center (GSFC). Each node is led by an expert in the subject discipline, supported by an advisory group of other practitioners of that discipline, and subject to selection and approval under a regular NASA Research Announcement.
Click here to return to the Photojournal Home Page Click here to view a list of Photojournal Image Galleries Photojournal_inner_header
Latest Images  |  Spacecraft & Technology  |  Animations  |  Space Images App  |  Feedback  |  Photojournal Search  

PIA12820: Tilting Saturn's Rings
 Target Name:  S Rings
 Is a satellite of:  Saturn
 Mission:  Cassini-Huygens
 Spacecraft:  Cassini Orbiter
 Instrument:  Imaging Science Subsystem 
 Product Size:  828 x 470 pixels (w x h)
 Produced By:  Cornell University 
 Full-Res TIFF:  PIA12820.tif (389.8 kB)
 Full-Res JPEG:  PIA12820.jpg (49.31 kB)

Click on image above for all movie download options

Original Caption Released with Image:

This animated graphic shows in a series of three images how Saturn's rings, after they became tilted relative to Saturn's equatorial plane, would have transformed into a corrugated ring.

Images taken after Saturn's August 2009 equinox from NASA's Cassini spacecraft revealed alternating light and dark bands extending from Saturn's D ring, completely across the C ring, and right up to the inner B ring edge (see PIA11664). These brightness variations are almost certainly caused by the changing slopes in the rippled ring plane, much like the corrugations of a tin roof.

This series of images shows how such a vertical corrugation can be produced from an initially inclined ring by the natural tendency for inclined orbits to wobble systematically and slowly at different rates, depending on their distance from Saturn. The top image shows a simple inclined ring (the central planet is omitted for clarity), while the lower two images show the same ring at two later times, where the ring particles' wobbling orbits have sheared this inclined sheet into an increasingly tightly-wound spiral corrugation.

Cassini images show the corrugation extends for 19,000 kilometers (12,000 miles). Based on detailed studies of this structure, scientists conclude that a broad swath of the rings became suddenly tilted in the early 1980s, likely because cometary debris crashed into the rings. The corrugation's radial extent implies that the impacting material was a dispersed cloud of debris instead of a single object. The corrugation's amplitude of 2 to 20 meters (7 to 60 feet) indicates that the debris' total mass was around 1 trillion kilograms (or one billion metric tons).

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C.

For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov/.

Image Credit:
NASA/JPL/Cornell

Image Addition Date:
2011-03-31